

目 录

1.	产品概述	2
	主要特性	
	封装及引脚说明	
	功能介绍	
	4.1 模式1: 双路三色	
	4.2 模式2: 双路三色,8秒无触摸短按关灯	
	4.3 模式3: 单路单色	
	4.4 模式 4 : 单路单色,带缓冲开关灯	5
5	应田由敗	5
6.	电气参数	6
	6.1 电气特性极限参数	6
	6.2 直流特性	
7.	封装尺寸图	7
	7.1 SOP8封装	
8.	历史记录	8

单触控双输出 LED 调光 IC

文件编号: PT-DS24002

1. 产品概述

PT2027 是一款单键电容式触摸控制 ASIC,支持单通道触摸输入和单路/双路 PWM 输出,可引脚配置 4 种模式。主要应用于触摸卫浴镜开关盒,具有介质自适应、高抗干扰、宽工作电压范围、灯光无频闪、外围器件少的突出优势。

2. 主要特性

- 工作电压范围: 2.4~5.5V
- 单通道触摸输入
- 双路 PWM 输出, 频率 21KHz
- 采用电荷分享方式实现触摸
- 按键最长输出时间: 16 秒(±30%)
- 可引脚配置 4 种模式,单双路通用
- 内置稳压源、上电复位和低压复位等硬件模块
- 具有介质自适应能力 @Cm=33nF&镜子厚度 3~5mm 均能确保较好的触摸手感
- HBM ESD 优于 5KV
- 封装形式: SOP8

3. 封装及引脚说明

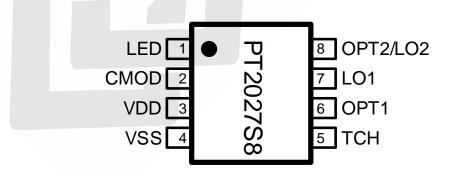


图 1 SOP8 封装示意图

www.pintengtech.com 版本号 V1.3 2 / 8

表 1 引脚说明

NO.	管脚名称	I/O	描述
1	LED	I/O	LED 背光
2	CMOD	I/O	采样电容输入脚
3	VDD	Р	电源正
4	VSS	Р	电源负
5	TCH	I/O	触摸输入脚
6	OPT1	I/O	选项输入脚 1,悬空为 1
7	LO1	I/O	PWM 输出脚 1
8	OPT2/LO2	I/O	1、选项输入脚 2, 悬空为 1 2、PWM 输出脚 2

4. 功能介绍

- TCH 触摸输入对应 LO1/LO2 灯光控制输出
- 工作状态如下:

表 2 状态说明

状态	LO1/LO2	LED背光	备注
待机状态	无输出	蓝灯	LED背光指示灯颜色可通过
工作状态	输出	白灯	对调图2典型应用电路中D1
休眠状态	无输出	灭	D2位置进行调换

- 因有物体覆盖触摸盘或环境突然变化,可能导致触摸检测持续有效。IC 内部触控算法检测到输出有效持续时间达到设定值 16S(±30%)时,触摸复位,重新校准环境。输出保持当前状态。
- 共有 4 种模式可选,由 OPT1/OPT2 管脚上电前的输入状态来决定。芯片管脚有内部上拉,悬空为 1,接 GND 为 0,具体如下表:

表 3 功能模式

*** ********				
模式	OPT1	OPT2	输出	功能说明
1	1	0	双	双路三色
2	0	0	双	双路三色,8秒无触摸短按关灯
3	1	1	单	单路单色
4	0	1	单	单路单色,带缓冲开关灯

详细功能说明如下:

www.pintengtech.com 版本号 V1.3 3 / 8

4.1 模式1: 双路三色

■ 短按键色温切换

表 4 色温切换输出状态说明

短按次数	LO1(PWM占空比)	LO2(PWM占空比)	LED背光			
1	100%	0%	白灯			
2	0% 100%		白灯			
3	100%	100%	白灯			
4	0%	0%	蓝灯			
5	执行第1次短按键操作,反复循环					

- 长按键功能模述
 - 在工作状态下,长按键在当前色温模式下,若亮度值大于 50%由向下无级调光,小于 50%则向上无级调光。再次长按调光方向反转。调光占空比范围:10%~100% 行程:3S
 - 在待机状态下,长按键进入休眠状态,即 LED 背光灯灭
- 在休眠状态下,短/长按键进入待机状态,即 LED 背光亮蓝灯
- 短按键色温切换时,亮度带记忆

4.2 模式2: 双路三色, 8秒无触摸短按关灯

■ 在模式 1 的基础上,在任何工作状态下 8 秒无触摸,短按键关灯,再次短按开灯并进入 关灯前的状态,包括亮度和色温

4.3 模式3: 单路单色

- 短按键功能模述
 - 第 1 次短按, LO1 输出, PWM 占空比 100%。LED 背光灯亮白灯, 进入工作状态
 - 第 2 次短按, LO1 无输出, LED 背光灯亮蓝灯, 进入待机状态
- 长按键功能模述
 - 在工作状态下,长按键在当前亮灯模式下,若亮度值大于 50%由向下无级调光,小于 50%则向上无级调光。再次长按调光方向反转。调光占空比范围: 10%~100% 行程: 3S
 - 在待机状态下,长按键进入休眠状态,即 LED 背光灯灭
- 在休眠状态下,短/长按键进入待机状态,即 LED 背光亮蓝灯
- 帯不断电记忆

www.pintengtech.com 版本号 V1.3 4 / 8

4.4 模式4: 单路单色, 带缓冲开关灯

- 在模式3的基础上,增加缓冲开关灯
- 缓冲平均变化时间约为 PWM 占空比 10% / 200mS,即开灯 LO1 输出 100%占空比的缓冲总时间约为 2S

5. 应用电路

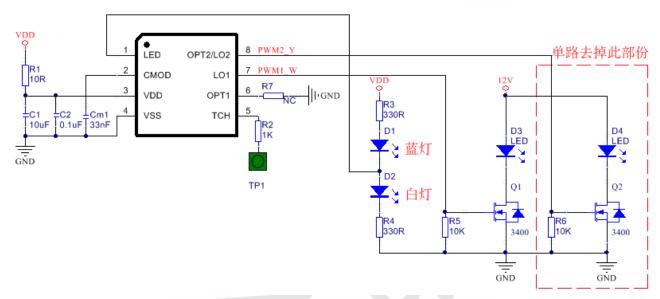


图 2 典型应用电路

注意事项:

- 当介质材料及厚度等差异较大时,可通过调整 CMOD 与 GND 之间的 Cm 电容来调节触摸灵敏度。电容容值越大,灵敏度越高;电容容值越小,灵敏度越低。Cm 电容上限为 47nF,默认使用 33nF
- 背光 LED 因质量差异在休眠状态(LED 背光灭)会出现微亮现象。可通过更换 LED 或将 VDD 电压降为 3.3V 来解决此问题。

www.pintengtech.com 版本号 V1.3 5 / 8

6. 电气参数

6.1 电气特性极限参数

表 5 极限参数

参数	标号	条件	范围	单位
供电电压	V_{DD}	-	-0 to +6.0	V
输入电压	Vı	所有 I/O口	-0.3 to V _{DD} + 0.3	V
工作温度	T _A	-	-40 to + 85	$^{\circ}$ C
储藏温度	T _{STG}	-	-50 to + 125	$^{\circ}$ C

6.2 直流特性

表 6 直流特性 (如无特殊说明 V_{DD} = 2.4V~5.5V, Temp = 25°C)

						7
参数	标号	条件	最小值	典型值	最大值	单位
工作电压	V _{DD}		2.4		5.5	V
输入高电压阈值	ViH		0.75V _{DD}			V
输入低电压阈值	VIL				0.25 V _{DD}	V
GPIO 拉电流	Іон	V _{DD} =5V, VOH=0.9V _{DD}		6		mA
GPIO 灌电流	loL	V _{DD} =5V, VOL=0.1V _{DD}		18		mA
PWM 输出频率	F _{PWM}			21		KHz

7. 封装尺寸图

7.1 SOP8封装

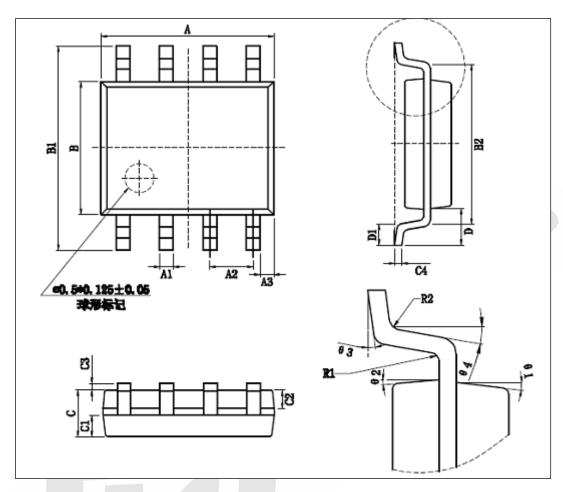


图 3 SOP8 封装

表 7 SOP8 封装尺寸

						Unit:	mm
符号	最小值	典型值	最大值	符号	最小值	典型值	最大值
Α	4.80	-	5.00	C3	0.05	1	0.2
A1	0.356	-	0.456	C4	0.203	-	0.233
A2	1	1.27	-	D	1	1.05	-
А3	1	0.345	-	D1	0.4	1	8.0
В	3.80	1	4.00	R1	1	0.20	-
B1	5.80	-	6.20	R2	-	0.20	-
B2	ı	5.00	-	θ1	ı	17°	-
С	1.30	-	1.60	θ2	-	13°	-
C1	0.55	-	0.65	θ3	0°	-	8°
C2	0.55	-	0.65	θ4	4°	-	12°

8. 历史记录

版本号	修改记录	发布日期
V1.0	初版	2024-01-05
V1.1	修改工作温度范围	2024-07-03
V1.2	更新典型应用电路	2025-06-27
V1.3	更新超长按键复位描述	2025-10-20

最终版本以官网为准,请及时下载查阅!

