

目 录

1.	产品概述	2
2.	主要特性	2
3.	封装及引脚说明	2
4.	功能介绍	4
5.	串行通讯协议	5
6.	参考例程	6
7.	应用电路	8
8.	电气参数	9
	8.1 电气特性极限参数	9
	8.2 直流特性	9
9.	封装尺寸图	10
	9.1 SOP16封装	10
	9.2 QFN16封装	
10) 历史记录	12

十触控 IIC 输出 IC

文件编号: PT-DS18031

1. 产品概述

PT8020 是一款电容式触摸控制 ASIC,支持 10 通道触摸输入,高速 IIC 输出,多键同步模式。具有低功耗、高抗干扰、宽工作电压范围、高穿透力的突出优势。

2. 主要特性

- 工作电压范围: 2.4~5.5V
- 工作电流: 3mA(正常模式); 25uA(低功耗模式)@V_{DD}=5V&CMOD=10nF
- 10 通道触摸输入
- 高速 IIC 同步输出,可同时输出多个按键状态。有按键时,INT 输出低电平否则输出高电平
- 用 CMOD 脚的外接 Cs 电容调节灵敏度, 电容越大灵敏度越高
- 具有防水功能, 当水漫或成片水珠覆盖在触摸面板时, 按键仍可有效判别
- 内置稳压源、上电复位和低压复位等硬件模块
- 内置实时环境自适应、高效数字滤波等软件算法
- HBM ESD 优于 5KV
- 封装形式: SOP16、QFN16

3. 封装及引脚说明

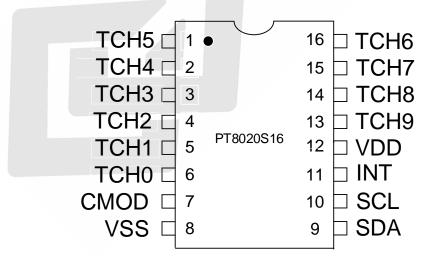


图 1 SOP16 管脚示意

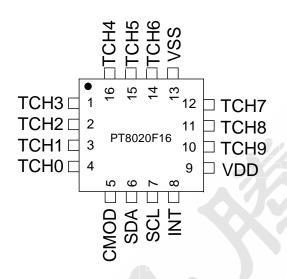


图 2 QFN16 管脚示意

表 1 引脚说明

NO.		奔毗 <i>反</i> •	1/0	444	
SOP16	QFN16	管脚名称	1/0	描述 	
1	15	TCH5		触摸输入脚 5	
2	16	TCH4	. 1	触摸输入脚 4	
3	1	тснз	1	触摸输入脚 3	
4	2	TCH2	1	触摸输入脚 2	
5	3	TCH1	-	触摸输入脚 1	
6	4	TCH0	I	触摸输入脚 0	
7	5	CMOD	I	采样电容输入脚	
8	13	VSS	Р	电源负	
9	6	SDA	0	IIC 的数据输出脚	
10	7	SCL	I	IIC 的时钟输入脚	
11	8	INT	0	按键状态改变通知输出脚	
12	9	VDD	Р	电源正	
13	10	TCH9	I	触摸输入脚 9	
14	11	TCH8	I	触摸输入脚 8	
15	12	TCH7	I	触摸输入脚 7	
16	14	TCH6	I	触摸输入脚 6	

I =>仅有 CMOS 输入

O => CMOS 输出

I/O =>输入输出

P =>电源/地

4. 功能介绍

- 芯片采用高速 IIC 同步输出,未按键时对应位输出数据 0,按键时对应位输出 1
- 输出为多键模式,同一时刻可输出多个按键状态。所有通道无按键时,INT 输出高电平;有通道按键时,INT 输出低电平
- 按键有效输出连续超过 10 秒,芯片复位,输出恢复原状态。
- 可分辨水与手指差异,当水漫或成片水珠覆盖在触摸面板时,按键仍可有效判别。但水不可于 触摸按键盘上形成"水柱"。
- 持续无按键超过4秒时,芯片进入低功耗模式
- 环境自适应功能,可随环境的温湿度变化调整参考值,确保按键判断正常工作
- 内置稳压源及抗电源纹波的滤波算法程序,对电源纹波的干扰有很好的耐受能力

5. 串行通讯协议

5.1 协议概述

- 1. 在不读取触摸 IC 的数据时,保持 SCL 和 SDA 的状态为高电平状态或高阻状态。
- 2. 一次完整的通讯,外部主控 MCU 读取 SDA 数据时,必须在 SCL 上输出 12 个低电平脉冲,1 个是起始位,1 个是结束位,10 个是数据位。

5.2 IIC 通信协议定义

1. IO 状态设置:

主控 MCU:

M SDA(主控数据脚)设为高阻输入态

M SCL(主控时钟脚)设为输出态,

M INT(主控中断输入脚)设为高阻输入态

触摸 IC:

S SDA(触摸 IC 数据脚) 设为上拉输入/输出态

S_SCL(触摸时钟脚)设为上拉输入态

S_INT(触摸中断输出脚) 设为输出态

2. 起始位:

待机时, M_SCL 发送一个时钟, M_SDA 检测到低电平, 则通讯握手成功。

3. 数据读取:

通讯握手成功后, M_SCL 发送一个时钟, M_SDA 检测此时的状态。如此依次读取 10 个 bit 的数据信息。触摸按键 0-9 对应 bit0~9, 触摸按键有效时,对应 bit 为 1,触摸无效时对应 bit 为 0。

4. 停止位:

主控 MCU 读取了 10bit 的数据后, M_SCL 发送一个时钟, M_SDA 检测到高电平, 则通讯结束。

5. 注意事项:

- 主控 MCU 起始位若握手不成功,则反复发送时钟,直至握手成功方可进行数据读取。
- 主控 MCU 停止位若未读取成功,则读取的数据为无效数据,进行丢弃。
- 主控 MCU 读取数据,需在 M SCL 时钟高电平结束后读取,以确保数据的有效性。
- 时钟周期: 20US<T<8MS, 最高支持 50K/S 通讯速率。

5.3 通信协议时序图

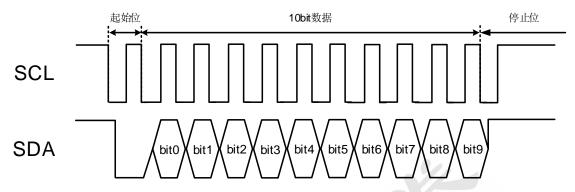


图 3 通信协议时序图

6. 参考例程

```
sbit INT = P2^2;
sbit CLK = P2^1;
sbit SDA = P2^0;
                                      //保存读取的 I2C 值
unsigned int I2C_DATA;
//* Description:
void main(void)
   unsigned char i;
   //初始化
   CLK = 1;
   SDA_MI;
                                      //SDA 设为输入
   I2C_DATA = 0;
   //主程序
                                      //INT=0 有按键按下
   while(!INT)
       if(SDA == 1)
       {
           send_clk();
                                      //发送时钟
           if(SDA == 0)
                                      //握手成功
               for(i=0;i<10<i++)
                   I2C_DATA<<=1;
                   send_clk();
                   if(SDA == 1)
```



```
I2C_DATA|=1;
                }
             }
             send_clk();
                                //结束位接收失败,数据无效
             if(SDA == 0)
                I2C_DATA = 0;
                          //延时 10MS,等待 TOUCH 转换完成进行下一轮读数
             DELAY_10MS;
          }
      }
      else
      {
          send_clk();
      }
   }
              时钟发送
//* Description:
void send_clk(void)
{
   CLK = 0;
   DELAY_30us();
   CLK
          = 1;
   DELAY_30us();
```


7. 应用电路

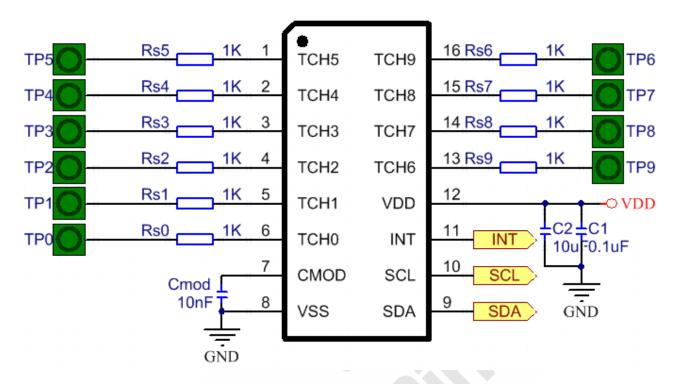


图 4 典型应用电路

注意:

当介质材料及厚度等差异较大时,可通过调整 CMOD 与 GND 之间的 Cs 电容来调节触摸灵敏度。电容容值越大,灵敏度越高;电容容值越小,灵敏度越低。以下数据仅供参考,具体以实际为准。

表 2 CMOD 采样电容

人氏米刑	CMOD采样电容			
介质类型 	器件类型	器件参数		
直接触摸金属外壳	333 NPO电容	33nF/25V		
3mm 以内亚克力玻璃	103 NPO电容	10nF/25V		
3-6mm 亚克力玻璃	203 NPO电容	20nF/25V		
6-10mm 亚克力玻璃	473 NPO电容	47nF/25V		

www.pintengtech.com 版本号 V1.6 8 / 12

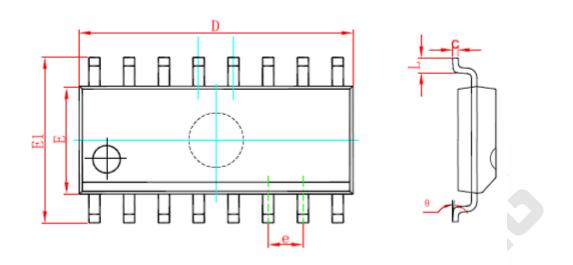
8. 电气参数

8.1 电气特性极限参数

表 3 极限参数

参数	标号	条件	范围	单位
供电电压	V_{DD}	-	-0 to +6.0	V
输入电压	Vı	所有 I/O口	-0.3 to V _{DD} + 0.3	V
工作温度	TA	-	-40 to + 85	$^{\circ}$
储藏温度	T _{STG}	-	-50 to + 125	${\mathbb C}$

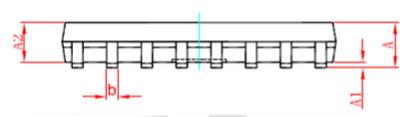
8.2 直流特性


表 4 直流特性 (如无特殊说明 V_{DD} = 2.4V~5.5V, Temp = 25°C)

11 = 000 11 M (00) 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
参数	标号	条件	最小值	典型值	最大值	单位		
工作电压	V_{DD}		2.4		5.5	V		
输入高电压阈值	V _{IH}		0.75V _{DD}			V		
输入低电压阈值	VIL				0.25 V _{DD}	V		
输出 Source 电流	Іон	V _{DD} =5V, VOH=0.7V _{DD}		15		mA		
输出 Sink 电流	l _{OL}	V _{DD} =5V, VOL=0.3V _{DD}		30		mA		
工作电流	I _{Lp}	V _{DD} =5V, Cmod=10nF 25 3		uA				
工作电机	I _{Nm}			3		mA		

9. 封装尺寸图

9.1 SOP16封装



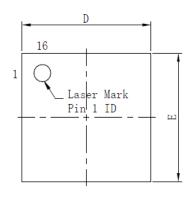
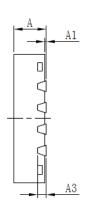
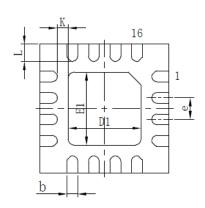

图 5 SOP16 封装图

表 5 SOP16 封装尺寸


<i>h</i> /r □	尺寸(mm 単位)			かロ	尺寸(Inches 单位)		
符号	最小值	典型值	最大值	符号	最小值	典型值	最大值
Α	1.35	-	1.75	Α	0.053	-	0.069
A 1	0.10	-	0.25	A 1	0.004	-	0.010
A2	1.35	-	1.55	A2	0.053	-	0.061
b	0.33	-	0.51	b	0.013	-	0.020
С	0.17	-	0.25	С	0.007	-	0.010
D	9.80	-	10.2	D	0.386	-	0.402
E	3.80	-	4.00	E	0.150	-	0.157
E1	5.80	-	6.20	E1	0.228	-	0.244
е	-	1.270	-	е	-	0.050	-
L	0.40	-	1.27	L	0.016	-	-
θ	0°	-	8°	θ	0°	-	8°


9.2 QFN16封装

Side View

Bottom View

图 6 QFN16 封装图

表 6 QFN16 封装尺寸

<i>₩</i> □.	尺寸 (mm 単位)					
符号	最小值	典型值	最大值			
Α	0.70	0.75	0.80			
A1	0.00	-	0.05			
А3		0.203REF				
b	0.20	0.25	0.30			
D	2.90	3.00	3.10			
E	2.90	3.00	3.10			
D1	1.60	1.70	1.80			
E1	1.60	1.70	1.80			
е						
K	0.20	-	-			
L	0.30	0.40	0.50			

10. 历史记录

版本号	修改记录	发布日期
V1.0	初版	2018-06-29
V1.1	工作电流参数修改	2018-08-14
V1.2	增加QFN16封装	2020-11-05
V1.3	1、更改QFN16脚位 2、更改直流电气特性	2022-05-07
V1.4	更新典型应用电路	2024-08-07
V1.5	修正工作温度与储藏温度	2025-04-23
V1.6	更新超长按键复位描述	2025-10-17

最终版本以官网为准,请及时下载查阅!

